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ABSTRACT

Several electron transport mechanisms in amorphous solids have been
investigated. The field-assisted nonlinear diffusion of charged particles
in the presence of a concentration gradient and homogeneous electric field
has been considered. An expression for the steady-state current has been
derived including explicitly the effects due to the lattice discreteness.

The results of this research have been presented for publication.l The
transport of electrons by Schottky emission from & metal into an oxide has
been treated. This transport mechanism has resulted in a new model for the
thermal oxidation of metals. A preliminary report has appeared in the lit-
erature.

The role of periodicity in the electronic band structure of solids has
been examined. A careful examination of periodicity and Bloch's theorem is
presented. It is shown that perfect periodicity allows the electronic wave
function to be simultaneously an eigenfunction of the Hamiltonian and the
translation operator. The periodic solid is treated in terms of tunneling.
This investigation shows the allowed energy bands result from complete trans-
parency of the solid to electrons. The aperiodic solid is treated by calcu-
lating the wave functions and determining the distribution of allowed energy
states by anode counting method. The model employed in these calculations
assumes square wells of finite width with the spacings between adjacent wells
being chosen at random from a Gaussian distribution. The results indicate
that the band edges become diffuse for small degrees of aperiodicity and that
the bands merge as the aperiodicity becomes large. For large periodicity the

density of states approaches that of the free-electron model.
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I. Introduction

The quantum-mechanical treatment of the motion of electrons in crys-
talline solids has resulted in the highly successful band theory. This
theory is evoked in essentially all considerations of the electrical prop-
erties of solids and has quantitatively correlated a large body of experi-~
mental data. The conventional development of this theory is based on Bloch's
theorem which states the relation between the perfect periodicity of the
lattice and the electronic wave functions. This relation allows a mathe-
matically rigorous determination of certain general properties of the elec-
tronic wave functions; specifically, the electrons may be described by
modulated plane waves. Further, the values of the total energy for which
this type of solution exists fall into bands. Such a description implies a
free motion of the electrons through the lattice subject to the condition
that the electrons do not respond to external forces the same as if they were
free. This leads to the assignment of an effective mass which is generally
different from the free electron mass.

It appears that the band theory is inseparably connected to the condition
of perfect periodicity and that a band structure would not exist for a system
which is aperiodic, i.e., disordered. Such conclusions, however, are not
supported experimentally.3 Liquid metals are not periodic yet the electrical
properties of liquid metals are not very different from those of the solid
metals. The similiarity of electrical properties of molten and solid semi-
conductors offers strong evidence since the electrical properties of a semi-
conductor are extremely sensitive to changes in the band structure. Many
amorphous systems exhibit semi-conducting properties. Alloys and crystalline
solids with randomly distributed impurities are, with respect to the question
of validity of a band theory, comparable to liquids and amorphous solids.

Although the electrical properties of these systems indicate the existence
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of a band structure, there is, as yet, no theoretical justification for the
application of the present band theory to systems which are not striectly
periodic.

The investigation of disordered systems has taken two approaches:
(1) perturbation methods, (2) numerical methods. In the perturbation ap-
proaches, disorder is assumed to be a perturbation on an ordered system.
The results indicate that bands should exist but this is not conclusive since
the band structure arises from the unperturbed (ordered) system. Further,
it is not clear that disorder may be treated as a true perturbation in all
cases. The numerical approach assumes extremely simple models for disordered
systems and wger egquations are solved mumerically. This
method does not lend itself to generalization and no significant results have
been achieved. At present, it appears that the disordered system is intract-
able to rigorous treatment.

The present communication is concerned with the numerical investigation
of an aperiodic linear chain. The general approach is one of operator algebra.
In Section II, Bloch's theorem is considered and carefully examined. The
operator technique is used to solve the well-known Kronig-Penney model (perfect
periodicity). In Section III, the periodic chain is treated in terms of the
tunneling phenomena and the results suggest a method of attack for the aperiodic

case. Finally, in Section IV, the aperiodic linear chain is treated using the

operator technique.
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ITI. The Perfect Solid and Bloch's Theorem
The band theory of crystalline solids is based on the results of Bloch's
theorem. This fheorem relates the periodicity of the lattice to the electronic
wave functions. In order to ascertain this connection, it is necessary to
examine Bloch's theorem in detail. Although the proof may be found in many

L

places, it is given here for its pedagogical value. Further, it establishes
the framework for succeeding considerations.

Operator algebra is the basis of the proof. The two operators of interest
are the translation operator and the Hamiltonian or energy operator. The trans-
lation operator is defined by:

Tyg V(%) = W(xtd) . (2.1)
In other words, the operation of T, 3 on the wave function evaluated at the
point x yields the value of the wave function of the point xtd. For the
present, d will be taken as the lattice parameter. Applying Ttd N times
yields

de ¥(x) = y(xxNd) . (2.2)

The Hamiltonian operator is of the form

H=-ﬁ§§§+Wﬂ . (2.3)

If ¥ is an ejigenfunction of H, then the operation of H yields the total energy
of the electron;

Hy(x) = E¥(x) , (2.4)
i.e., Schroedinger's equation holds.

Consider the operator obtained by combining 'I.‘J‘d and H;

72 42
TyqH = - - Trg + TpaVi(x) - (2.5)

For the case of perfect lattice pericdicity,

TpgV(x) = V(x6d)Tyy = V(x)Txq (2.6)



and
2 2
B £ 4q
T_de = [-a;*‘ V(X)]Ttd
or (2.7)
[T’hd’ H] =0

Here [ ] denotes the commutator of Ttd and H.
The desired electronic wave functions must be eigenfunctions of Hj i.e.,

Eq. (2.4) must hold. If both sides of Eq. (2.4) are operated upon by T, 4

T g = BT 0 (2.8)

the commutation relation, Eq. (2.7), implies
B AT, v} =B (T} (2.9)

In other words, the function Ttdw is also an eigenfunction of H with the
same eigenvalue E. Moreover, the function ¥ may be chosen to be an eigen-

. 5
function of Ttd :

Tegh = MV (2.10)

where A\, is the eigenvalue.
In addition to the condition that the wave function be an eigenfunction
of H, it is also required that V¥ remain finite as x tends to infinity.

This condition 18 satisfied if the eigenvalue of T, . has a magnitude of unity;

td

i.e., x>t is equivalent to N—® in Eq. (2.2) and for
. N

Limit (Ay) (2.11)

N—» @
to remain finite , [x*| must be unity. This restriction suggests redefining
the eigenvalue i\, as

i

N, = e 0 (2.12)

where 9@ is a real guantity.



Further algebraic manipulation will show that the general form of the

electronic wave function for a perfectly periodic system is
¥(x) = exp(ikx)Up(x) (2.13)

where kd = 6, and Uk(x) is a periodic function with period 4. The electronic
wave function as given by Eq. (2.13) is known as a Bloch function. This form
is a direct consequence of the lattice periodicity.

This derivation indicates that the periodicity of the crystal allows
the wave function to be simultaneously an eigenfunction of both the Hamiltonian
operator and the translation operator. Further, Eq. (2.13) shows that the wave
function ditfers from cell to cell by only a phase Tactor. The implication is
that the probability of finding an electron within a cell is the same in all
cells. This follows since w*w, interpreted as the probability density, is
the same at equivalent points in all cells. Apparently the electrons experi-
ence no difficulty in moving through the lattice.

Any aperiodicity of the potential will produce a non-vanishing commutator
of T,4q and H. Consequently, the wave function cannot be simultaneously eigen-
functions of both Ttd and H and the wave function cannot be represented as a
modulated plane wave. In general, the probability density integrated over a
unit cell will depend on the cell. 1.

The existence of energy bands for a perfect lattice is not the subject of
Bloch's theorem but may be obtained by using Bloch's theorem. The development
of the bands is easily seen by example. Consider the potential function shown
in Fig. 1. This is the model of Kronig and Penney.6 The procedure for deter-
mining the "Band Structure" is to explicitly determine a representation of
the translation operator by solving the appropriate Schroedinger equation. The
wave functions which are eigenfunctions of the translation operator are then
determined by finding the transformation which diagonalizes the translation

operator. The present considerations will be restricted to negative energies
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(See Fig. 1). The development for positive energies follows an identical

procedure with the initial wave functions being slightly different.
Consider the ith well and let the quantity x; be the position of the

center of this well. The well width is denoted by a and the well spacing

by 4. In region I (See Fig. 1), the wave function may be written as

V(x) = Ajsin[B(x-%4)] + Bjcos[B(x-xy)] ,
where (2.14%)

2m
B2 = =5 (V4+E)
il
In region IT, the wave function may be written as

¥(x) = Ciexplo(x-x;)] + Djexp[-a(x-x1)]

where (2.15)

2
of=-Ayg

A2
The continuity of the wave function and its derivative at x = xi+a/2 yields

the equations

Aisin(Ba/2) + Bjcos(Ba/2) = Ciexp(aa/E) + Dyexp(-0a/2) (2.16)
2.1

B{A;cos(Ba/2)-B;sin(pa/2) }=a{C;exp(0a/2) - D;exp(-aa/2)}

The continuity of the wave function and its derivative at x = xi+d-a/2 = xi+1-a/2

th

i.e., Eq. (2.14) for the i+15t well matched with Eq. (2.15) for the i’® well,

yields the two equations
-A;,q5in(Pa/2) + By,jcos(Ba/2) = Cjexpla(da-a/2)] + Diexp[-a(d-a/Q)]

(2.17)
p{A; jcos(Pa/2) + Bj,1sin(pa/2)} = a{éiexp[a(d-a/2)]-Diexp[—a(d-a/Q)W} .




Equations (2.16) may be used to eliminate C; and Dy from Eq. (2.17). The

resulting two equations, relating Aj:+3, B A;, and By constitute a

i+1’

representation of the operator T When cast into matrix notation

A
(2.18)
B .

the operator T+d is represented by a 2 x 2 matrix. The elements of this

matrix are:

(T+d)l,l = (T+d)2’2 = cos(pa) coshla(d-a)l + Qi&gg sin(Ba) sinh(a(d-a)]
(T+d)1,2 = - % expla(d-a) ! {sin(Ba) - az;gg - Qi&g2 cos(Ba)}

- % exp[ -a(d-a) ] {sin(pa) + ai;gQ - ai&gz cos(Ba)} . (2.19
(Mgl - 5 emiaa-a)l(sinea) + G2 - B cos(pe))

2.2 2.2
P8 aPp
56 =5~ cos(Ba)}

+ % expl-a(d-a)l{sin(Ba) -

A representation for T_g may be obtained from the identity

-1
T_q = Tig - (2.20)

In order that ¥ be an eigenfunction of T, 4, & transformation

= Q (2.21)

must be found such that the transformed T+d representation,

' a-l
Ttd = QT 48 ) (2.22)

7

is diagonal. Such a transformation' is assured provided the secular equation
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) _e'i:ig
1,1

(T, (T*d>1,2
_|=0 (2.23)
(Tﬂl)e’1 (T*d)2,2 -efio

is satisfied. Thus the wave function is simultaneously an eigenfunction of

T and H whenever
=d

2 .2
cos & = cos(Ba) cosh[o(d-a)] + ae&g sin(Ba) sinhfa(d-a)] . (2.24)

The fact that Det Ttd = 1 has been used to obtain this equation. Since o
is a real quantity, the allowed energy values,contained in @ and B, are

given by the equation

o
e}
0
©
N
}-J

-~~~
no
N
AN

S

The function cos @ is shown in Fig. 2. Those energies for which Eq. (2.25)
is satisfied are seen to fall into bands. It is interesting to note that these
8
bands develop around the bound levels of an isolated well. The bound levels

are given by the equation

tan (Ba) = - &% : (2.26)

This corresponds approximately to the point cos © = O of Eq. (2.25). The
positions of the bound levels are shown in Fig. 2.

The electronic dispersion is usually given by the dependence of the energy
on the wave-vector of the Bloch functions. Such a representation for the
Kronig-Penney model is shown in Fig. 3. The extension of this approach leads
to the theory of Brillouin Zones. It is important to realize that Brillouin
zones are & direct consequence of perfect lattice periodicity. This follows
since the Bloch wave-vector k is essentially the eigenvalue of the translation
operator. In instances where the translation opérator does not commute with

the Hamiltonian operator, i.e., aperiodic systems, the Brillouin zone scheme
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has no validity and the dispersion relation camnot be represented by E versus
k. In this event, the density of states is a convenient representation of

the dispersion relation.

ITII. Physical Interpretation of Bloch's Theorem

Bloch's Theorem as presented in the previous section provides the nec-
essary formalism for treating the electrons in a periodiec solid. It does not,
however, offer much in the way of understanding of the physics involved. The
purpose of this section is to treat the perfect solid in a rather unconventional
way and to show the intimate connection between Bloch's theorem and the phe-
nomenon of electron tunneling.

A very important aspect of quantum mechanies is that it prediets that
particles of energy E will penetrate a potential barrier V(x) where E-V(x)
is locally negative.9 This situation is without classical analogue and
corresponds to particles appearing on the other side of the barrier without
"going over the top"; i.e., they tunnel through. An analogous situation occurs
over a potential well; the electrons are reflected when classically no reflection
should occur. These effects are a direct consequence of the wave nature of
matter and are operative phenomena in electron transport in solids.

The connection of Bloch's theorem and the tunnel effect is best seen by
considering an electron in a given well and calculating the probability of
this electron tunneling through the barriers between the wells and appearing
in another well. It is supposed that an electron in the zeroth well is
traveling to the right and incident on the barrier system formed by the
succeeding atoms. The electron wave function is calculated in the Neh well
and the ratio of the transmitted electron flux to the incident electron flux
then gives the transmission coefficient for the intérvening barrier system.

The transmission coefficient thus calculated in a measure of the ease with
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which the electron moves through the lattice. This situation is shown
diagramatically in Fig. k.

The wave function in the zero® well is considered to be composed of
two parts: (1) plane wave moving to the right, the incident wave, (2) a
plane wave moving to the left, the reflected wave. The wave function may

be written as

¥(x) = Ay exp[iB(x-%,)] + B exp[-iB(x-%,)] - (3-1)

The wave function in Nth cell is composed of only a transmitted wave moving

to the right. Thus

V(x) = Ay exp[iB(x-xy)] + By exp[-iB(x-xy)]
with ‘ (3.2)

The transmitted wave may be related to the incident wave by using the
translation operator. TIf it is assumed that the wells are perfectly periodic

with a spacing d, then

=1' (3.3)

Note that the operator T;d performs the same function as Tig in the previous

section. However, in the present treatment the wave functions are slightly
1

different and consequently the representation of Ttd is different. This is

1
explicitly denoted by the prime. The T* representation may be related to

d
1 1
the T*d representation by noting the relation between the amplitudes Ai’ By,

Ai , and Bi:



= Q Q = (3.L4)
i i o 11
The T+d matrix, Eq. (2.19), transforms according to the similarity transformation

1

Tiqg = © 1TtdQ : (3.5)

Evaluation of Eq. (3.5) using the transformation as defined by Eq. (3.4)

yields
. 2
(p' ) = &xp(-i88) ((-18)? expla(d-a)] - (o+if)” exp[-0(d-a)1}
-4y 1 1B
: 2,52
(T ) = a.+B sinh[a(d-a)l . (3.6)
-d 1’2 210ﬁ *

It is easily shown that the remaining elements of T:d are related to those

of Eq. (3.6) by

(') = (Tl)”
2,2 1,1
(3-7)
(T.)) = (T *
"4 0
The transmission coefficient, defined by
A& 2
T =
N A, 2 (3.8)
becomes 5
it
Ay
TNz 1 v 'N )
(T_) Ay + (T_3) By
d 1,1A“ 2,1
S CE N (3.9)
1,1
since it is assumed that Bh = 03 i.e., there is no electron traveling to the

left in well N.

1
The evaluation of the NI power of the operator T_gq as given by Egs.(3.6)
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and (3.7) will then yield the transmission coefficient. This evaluation is
most easily performed by using a theorem from matrix algebra known as the
idempotent theorem. © Suppose that f(A) is any polynominal function of the
matrix A. Then, for the case of a 2 x 2 matrix, this matrix function may

be written as

¢a) - Mof(A) = MF(Ag) - £(n,) - £() N

(3.10)

provided

MEX

Here xl and A, are the eigenvalues of the matrix A, I, is the 2 x 2 identity
matrix and f(\) is the scalar obtained by evaluating the function f(A) with
o replacing the matrix A. Using this theorem, the

transmission coefficient becomes

the eigenvalues xl and )\

N N N N xN -2
Aodyshdy Aoty
TN = - X X (T-d) . (3 -ll)
)xg-)\,l 2= 1 l,l

The eigenvalues of the A matrix are given by the equation

[(r')  =A(Tly) - - (Tl (1) =0 . (3.12)
.4 1,1 0 Vo1 P12
Using the identities
Det(T:d) =1
and (3.13)
(T'y) = (2"
2,2 1,1
Eq. (3.12) becomes
A2-2Re[(T.q) IA+1=0 . (3.14)

1,1




=18~

Equation (3.1L) is a quadratic equation with real coefficients. The theory
of algebraic equations indicates either both roots are real or are complex
and conjugate. Further, the roots must be reciprocals of each other and the
two complex roots therefore have a magnitude of unity. For real roots

Re2[(T:d) 1>1 s
1,1

Mot g = 2Re[(Tl) 1, (3.15)
1,1

Moo=,

and for imaginary roots

Re°(T ) <1

1,1
*
)\,l=)\.2 I}
(3.16)
Moo= ohy =1,

Re(Aq) = Re(X) = Re[(T' ]
e(2q) e e[( ‘d)l,l

Consider the case of real roots. By direct substitution of Eq. (3.15)

into Eq. (3.11) it can be shown that

2(N-2)
TNG)\,]— )"l<l

o(-2) (3.17)
=2(N-
TNot)»l ( )‘1 > q

b

for large values of N. Thus the transmission coefficient is always less
than unity and becomes vanishingly small as N becomes large. The inter-
pretation is that the electron does not move readily through the lattice,

since the probability of finding the electron monotonically decreases with

distance from the original well, i.e., Ty~ O as N—°°,
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Consider the case of complex roots. By substituting Eq. (3.16) into

Eq. (3.11) the transmission coefficient becomes

-2
T = |- sin(¥-1)6 , sinW® (r' ) , (3.18)
sine sine 1,1
where @ is defined by
io
M o=e o 0<e<n . (3.19)

Note the restriction that @ be in the first or second guadrant follows from
the conjugate relation between Ay and Ap. From the last of Eq. (3.16) the
equation

2 a2
cos @ — cos(Ba) coshl[a(d-a)] + ag&s sin(Ba) sinh[a(d-a)] . (3.20)

results. Algebraic manipulation of Egs. (3.18) and (3.20) yields the expression

L2 1
_ 2 sin“Ne . 2 1
Ty = |cos Ne + =i In' [(T_d)l l][ . (3.21)
2

This equation shows that the transmission coefficient becomes unity wherever
®=— , n=1,2, .. .N-1 . (3.22)

The special case 6 = 0 is easily shown to yield a transmission coefficient
less than unity. Hence, the N-1 values of © given by Eq. (3.22) yield all
the unit transmission peaks.

The transmission coefficient as given by Eg. (3.21) is readily evaluated
numerically. The evaluation obtained for N=6 is shown in Fig. 5. The results
are in accord with the predictions of the above derivation: whenever the
eigenvalues of T are real the transmission coefficient is small, and in the

range where the eigenvalues are complex there are N-1=5 unit transmission peaks.
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The most noteworthy aspect of the above approach is that electrons with
energies (contained in @ and B) satisfying Egs. (3.20) and (3.22) are essen-
tially free. In other words, a unit transmission coefficient implies that the
barrier system is ineffective in blocking the electrons and the crystal is
completely transparent to the electrons. This is essentially the result pre-
dicted by Bloch's Theorem as contained in the statement that the electron
may be described by a modulated plane wave. Indeed, the relation between the
energies of the unit transmission peaks and the eigenvalues 9 is identical
with that of the Kronig-Penney model (Compare Egs. (2.24) and (3.20)).
Further, there is a one-to-one correspondence between the values of @ for the
two cases provided the appropriate boundary conditions are impcsed on the
Kronig=-Penney model.

This treatment clearly indicates the way in which the bands of a crystal
are generated: As more and more atoms are added to the crystal, the number
of unit transmission peaks increases. As N tends to infinity, the density of
unit transmission peaks becomes quasi-continuous and a band of allowed energies
is formed. It should be noted that the energy range for which the eigenvalues
of the T' operator are complex does not depend on the number of wells. Con-
sequently, the band width is independent of the number of wells, in agreement
with the Kronig-Penney result.

The perfect periodicity of the lattice in the tunnel treatment is used
at only one point, Eq. (3.9). If the lattice were aperiodic, this equation
would be replaced by

-2

N
T = (W T: .) (3'2%)
N 1o 1,1
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In other words, the translation operator 7' depends upon the cell index and
the result of the N translations produces a product of N 2 x 2 matrices and
this may not be written as the Nth power of a single 2 x 2 matrix. Obviously
the reduction of the matrix product cannot be performed using the idempotent
theorem. This however, does not rule out the existence of unit transmission
coefficients and consequently, energies for which the crystal is transparent.
The argument presented above must be interpreted with reservation. At
present, it appears to be an acceptable plausability argument for the existence
of bands in aperiodic systems but is by no means definitive. Perhaps the
greatest merit lies in the physical interpretation given to electronic motion
in solids. Also, this approach minimizes the rocle of pericdicity. Tt is
hoped that this understanding will eventually be beneficial in the development

of a rigorous aperiodic band theory.

IV. Aperiodic Linear Chain

Attention is now directed to the aperiodic linear chain. A very simple
model will be considered and discussed in detail. Although the extension
of the results is not evident it is hoped that the understanding of the one-
dimensional model will be beneficial in developing more realistic models.

There have been several pertinent investigations utilizing numerical
techniques reported in the literature: of particular interest are reports
of James and Gianarg}l Landauer and Hellandl® and Makinson and Rober‘bs.l3
James and Gianargll treated the cases of one-dimensional disordered alloy and
impurity semi-conductor. They found that the sharply defined impurity band
of a crystal with regularly spaced impurities becomes smeared out as the dis-

12 treated the

tribution of impurities become random. Landauer and Helland
disordered chain by considering a series of identical wells separated by a

random well-to-well spacing and found that disorder narrowed the forbidden
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gaps and a disappearance of the forbidden band for large degrees of disorder.
However, Allen and Shockleylh have suggested that the pecularities of the delta-
well model may make it unsuitable for band calculations.

Accordingly, the present investigation attempts to unify and extend these
calculations by considering statistically acceptable aperiodic chains composed
of square wells. The spacings between the wells are chosen at random from a
Gaussian distribution. The band structure is determined by calculating the
wave functions using the translation operator and determining density of allowed
electronic states using a node counting method.

The model for the aperiodic linear chain is essentially that of Gubanovl?
which assumes a Gaussian distribution of lattice spacings. The probability

of choosing a spacing between x and x + dx is given by f(x) dx, where
£(a) = (2x) B0l expl-(a-a.)%/208] . (k.1)

Here o is the variance which is assumed to be a measure of aperiodicity, and
do is the mean spacing.

The physical properties of the chains may be calculated from the dis-
tribution of spacings. By using the central 1imit theorem of statistics,l6

it is found that the probability of an N + 1 particle chain having a total

length between L and L + dL is F(L)dL, where

F(L) = (2nN)‘%c'l exp[-(L-Ndo)e/aNoe]

and (4.2)

Accordingly, the average or most probable length of a N + 1 atom chain is

400
L =IML F(L)AL = Nd, - (4.3)
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This implies that the mean density of particles of the aperiodic chain is the
same as the corresponding periodic chain. This agrees with the observation
that the particle density of a solid form of a substance (periodic) is very
nearly equal to that of the liquid form (aperiodic). In other words melting
does not produce a marked density change.

The order may be investigated by determining the distribution of particles
relative to a given particle. Let the function p(x) denote the probability of
finding a particle a distance x from a given particle. This is equivalent to
the probability of finding a chain of length x composed of any number of particles.

From Eq. (4.2), it follows that
00

o(x) =X (21(1\1)'%0'1 exp[-(L-Ndo)2/2N02] . (4. k)
N=1

The evaluation of this function for two values of ¢ with do = 4 % is shown in
Fig. 6. For small values of x, the particles are most probably at perfect lattice
sites. Consequently, the lattice exhibits short-range order. On the other hand,
when x becomes large the probability approaches a constant indicating that par-
ticles are equally probable at any point. Thus, there is no statistical relation
between the position of the particles and consequently, no long-range order.
This agrees with the results of x-ray diffraction experiments which show that
liquids and amorphous solids exhibit a degree of short-range order but no long-
range order.

An estimate of the degree of order may be obtained from Eq. (k.2). An
N + 1 atom chain is assumed to be ordered whenever the N + 15t particle is
located within one half of a mean lattice spacing of the corresponding position

ina perfect lattice, i.e., whenever
N

(N-l/?_)do <§ d; < (N +l/2)do

i-1
or » (%.5)
(tnay)® <3 .
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The left hand side of Eq. (Lk.5), averaged over the distribution of Eq. (L.2),

becomes

+00
(L-Ng )2 = u[ (L-Ndy)?F(L)dL = N2 . (4.6)

oo

Hence, the chain is ordered whenever

N < (do/0)° (4.7)

The degree of order N is defined for the case of the equality in Egq. (k.7).
If a disordered chain is considered, N > ﬁ, the above result is interpreted
as a statement that the largest sequence of ordered particles contains N
particles and that no longer sequences are ordered.

The wave functions for the aperiodic chain may be calculated using the
translation operator. For the chain, indexed as shown in Fig. 7 and for

E < 0, the wave function may be written as:

¥(x)

il

Aysin[B(x~x3)] + Bjcos[P(x-x3)]
in Region I, and

¥(x)

Ciexpla(x-x;)] + Diexp[Ad(x-xi)] (4.8)
in Region II.

Proceeding as in the Kronig-Penney derivation, the matrix equation

= T4, (4.9)

Biny i

may be used to calculate the wave function in any well in terms of the wave

function in some arbitrary well. Here T.3 is given by Eq. (2.19) with 4

i+l

replaced by d,+ . Eq. (h4.9) is suitable for evaluation of the density of
i

1
states using the tunnel approach. However, in order to obtain statistically

significant results a large number of wells must be considered. Consequently,
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each band will contain a large number of unit transmission peaks and the
resolution of individual peaks is extremely difficult. This difficulty is
overcome by using a node counting technique.

The node counting method is based on a well-known theorem of quantum
mechanics;l7 the pth eigenfunction of the Hamiltonian for a one-dimensional
problem contains p-l nodes within the domain of x. Let NM(E) denote the
number of nodes in the wave function over M cells for the energy E. Accarding

to the above theorem, there are then NM(E) allowed states with energy less

than E. The integrated density of states becomes

G(E) = Linit (N, (E) /M)

(4.10)
and is related to the density of states by
E 1
G(E) =L/- g(E )aE'
0
or (4.11)
oG(E)
E) = ———=
8(E) = =

Thus, the average number of nodes per cell is a direct measure of the integrated
density of states. This method is the one used in the investigations mentioned
earlier.9 11

Since the wave function in the entire cell is required, the representation

of the Tidgeq operator given by Eq. (4.9) may be written as

The amplitudes beconme



and

where

B2
Ry o=
Ra 1=

Rp o=

o=

I N

-

-29-

i+1 i

= R, (4.13)

exp(-aa/2) {sin(pa/2) + B/a cos(Ba/2)}
exp(-ca/2) {cos(pa/2) - B/a sin(pa/2)}
exp(aa/2) {sin(Ba/2) - B/a cos(Ba/2)}

exp(oa/2) {cos(pRa/?) + B/o sin(Ba/2)}

-exp[a(di+l-a/é)]{sin(Ba/2)- o/ cos(Ba/2)}
-exp[-(d;,1-a/2) ] {sin(Ba/2) + o/p sin(Ba/2)}
exp[a(d;,1-a/2) J{cos(Ba/2) + /B sin(Ba/2)}

exp[-a(d; ,;-2/2) {cos(Ba/2) - o/B sin(pa/2)} . (4.1h)

The number of nodes NM(E) is obtained by calculating the wave function

for M consecutive wells and determining the solutions to the equation

Inside the ith

¥(x) =0 . (%.15)

well, the wave function is given by the first of Eq. (4.8).

The nodes occur at the points

x-x; = B tan™(-B,/A;) (4.16)

subject to the restriction that

-a/2 < (x-%;) < a/2 . (4.17)
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Thus, the number of nodes in the ith well may be expressed in the following

way

for o, > Ba/2 and (4.18)

N

]

1+ Ip[(Ba-¢i)/2n] + Ip[(5a¢¢i)/2n]

for ¢. <« 8./2. Here
¢ = tan (—B /A)
i i 1 ?

and is restricted to the first or fourth quadrant. The symbol Ip denotes

the integer part.

th

Between the i"" and i + 15° wells, the wave function is given by the

second of Egs. (4.8). The solution to Eq. (4.15) in this region yields
-1
x-x; = (20) Ln(—Di/Ci) . (4.19)
Clearly, there is only one node possible and this node occurs whenever

-D;/C; > 0
and (4.20)
The following procedure is employed in numerically evaluating the number

of nodes NM(E): The wave function is arbitrarily chosen in the first well
(e.g., Al =1and B = 0). Then, the amplitudes c,

using the Q matrix and the number of nodes in the first well calculated using

and Dl are calculated

Egs. (4.18) and (%.20). Finally, the amplitudes A, and B, are determined using

2
the R matrix and the above procedure repeated. The total number of nodes after.
treating M cells gives the quantity N,(E).

Extensive numerical investigation showed that the number of cells counted

must be sufficiently large to assure a good statistical sample of the lattice
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spacing distribution. It was found that counting the nodes in 1000 cells
satisfied this requirement. Further, this number is considerably larger than
the largest degree of order (See Eq. (4.7)) considered and consequently, the
short range order is breached many times in the sample.

The above derivation is applicable for energies E < 0. The derivation
for E > 0 follows an analogous procedure and will not be given. The results
differ in the expressions for the Q and R operators and in the solution for
the nodes.

The numerical evaluation of the integrated density of states for the
aperiodic chain has been performed. In all calculations, the chain parameters
were taken as d, = L ﬁ, a=2 R, and Vo = 10 ev with o the variable parameter.
The calculation for o = O results in the periodic case and provides a check
on the method since this case may be determined analytically. The results
are shown in Fig. 8; these compare well with those of the Kronig-Penney model.

The interpretation of the integrated density as a function of energy is
derived from Eq. (4.11). The flat regions in Fig. 8 correspond to the for-
bidden energy bands since the slope vanishes and consequently g(E) £ 0.

The non-zero slope regions correspond to allowed bands. Thus, the results
shown in Fig. 8 contain 3 allowed energy bands. The first band (the integer
part of G(E) plus 1 gives the band index) lies entirely in the negative energy
range and corresponds to tightly bound electrons. The band is seen to be quite
narrow compared to the forbidden region between the first and second bands and
to the width of higher bands. The second and third bands are in the positive
energy range and correspond to nearly~free electrons.

The effect of aperiodicity on the first band is shown in Fig. 9. These
curves are for o = 0, 0.2, 0.4, 0.6, and 0.8 X corresponding to variances of

0, 5, 10, 15, and 20% of the mean lattice spacing respectively. It is seen
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that the aperiodicity affects only the band edges with the center of the
band remaining unaffected. The greater the aperiodicity, the more diffuse
are the band edges. Further, the bands seem to be smeared equally at both
the upper and lower edges. Since the tightly-bound band is separated from
the next higher band by a very large band gap, the narrowing of the gap by
the smearing of the band edges is not appreciable.

The second and third bands are quite wide but separated by a relatively
small gap. In this case the region of the forbidden band is of primary in-
terest. Fig. 10 shows the results of aperiodicity on this gap. The values
of the parameters are the same as those in Fig. 9. Again, the aperiodicity
is seen to affect only

Fer ¢ = 0.2 the band edges are

= . iy ac d

C

spread by a small amount but a definite forbidden region remains. However,
for o = 0.4 & the spread is sufficient to populate the entire forbidden region
with levels; the density of states is small but nonetheless non-vanishing.
Finally, for o 3,0.6 R all traces of the forbidden band vanish and the density
of states is approximately uniform throughout the energy range considered.

The present results are in qualitative agreement with those of Makinson

12 13

and Roberts and Landaver and Helland, and must be considered a verifi-

cation of their work.
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V. Summary

The investigations presented in this communication have been very
beneficial in understanding aperiodic systems. An understanding of the
role of periodicity in the conventional development of the band structure
has been achieved. It was seen that Bloch functions are a direct consequence
of periodicity and are eigenfunctions of the translation operator. The tunnel
considerations indicated that this situation results from the condition of
transparency. This second approach minimized the role of periodicity and
indicated that transparency is expected in the aperiodic case. Clearly,
Bloch functions are not applicable for the aperiodic case. The numerical
treatment of the aperiodic Kronig-Penney model served to solidify these in-~
sights.

Present plans are to continue the numerical evaluation of the aperiodic
Kronig-Penney model. Further, it is planned to investigate the various per-
turbation approaches to the problem of aperiodicity.

A paper is being prepared for publication18

on the tunneling of electrons

through thin oxide films. This transport mechanism is of particular interest

in the theory of the thermal oxidation of metals. The investigation of electron
transport by Schottky emission from the metal into the oxide will be continued.

Further, an investigation into the role of space-charge on the transport of

electrons has been initiated.
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